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Thomas Rotation and Thomas Precession
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Received October 27, 2004; accepted November 19, 2004

Exact and simple calculation of Thomas rotation and Thomas precessions along a
circular world line is presented in an absolute (coordinate-free) formulation of special
relativity. A straightforward derivation of the Fermi–Walker equation is also given.
Besides the simplicity of calculations the absolute treatment of spacetime allows us to
make a clear conceptual distinction between the phenomena of Thomas rotation and
Thomas precession.
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1. INTRODUCTION

The ‘paradoxic’ phenomenon of Thomas precession has given rise to much
discussion ever since the publication of Thomas’ seminal paper (Thomas, 1927)
in which he made a correction by a factor 1/2 to the angular velocity of the spin of
an electron moving in a magnetic field. Let us mention here that in the literature
there seems to be no standard agreement as to the usage of the terms ‘Thomas
precession’ and ‘Thomas rotation.’ As explained in more detail in Section 10, we
prefer to use the term Thomas precession to refer to the continuous change of
direction, with respect to an inertial frame, of a gyroscopic vector moving along
a world line. Thomas rotation, on the other hand, will refer to the spatial rotation
experienced by a gyroscopic vector having moved along a ‘closed’ world line, and
having returned to its initial frame of reference (see Section 9).

One of the most studied cases (see e.g. Costella et al., 2001; Kennedy, 2002)
is the fact that the application of three successive Lorentz boosts (with the relative
velocities adding up to zero) results, in general, in a spatial rotation: the discrete
Thomas rotation (see Section 4 for details). The same fact is often described as ‘the
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composition of two Lorentz boosts is equivalent to a boost and a spatial rotation.’
We prefer to use three Lorentz boosts instead (with the relative velocities adding up
to zero), in order to return to the initial frame of reference, in accordance with our
terminology of Thomas rotation. Describing the mathematical structure of discrete
Thomas rotations has motivated A.A. Ungar (2001) to build the comprehensive
theory of gyrogroups and gyrovector spaces.

The other case typically under consideration comes from the original obser-
vation of Thomas: the continuous change of direction, with respect to an inertial
frame, of a gyroscopic vector moving along a circular orbit. This phenomenon
has been subject to considerations from various points of view (Muller, 1992,
appendix; Philpott, 1996; Rebilas, 2002, appendix; Herrera and Di Prisco, 2002;
Rhodes and Shemon, 2003). The considerations usually involve, either explicitly
or implicitly, the viewpoint of the orbiting ‘airplane’, i.e. a rotating observer. This
might lead us to believe (see Herrera and Di Prisco, 2002) that the calculated angle
of rotation depends on the definition of the rotating observer (and this could lead to
an experimental checking of what the ‘right’ definition of a rotating observer is).
From our treatment described later, however, it will be clear the Thomas rotation
is an absolute fact, independent of the rotating (or any other) observer.

It is also interesting to note that new connections between quantum mechani-
cal phenomena and Thomas rotation have recently been pointed out (Lévay, 2004).

As it is well known, the theory of special relativity contradicts our common
sense notions about space and time in many respects. Early day ‘paradoxes’
were usually based on our intuitive assumption of absolute simultaneity. With
the resolution of paradoxes such as the ‘twin paradox’ or the ‘tunnel paradox’
it has become common knowledge that the concept of time must be handled
very carefully. As it is also well known, the theory of special relativity implies,
besides the non-existence of absolute time, the non-existence of absolute space.
An expression such as ‘a point in space’ simply does not have an absolute meaning,
just as the expression ‘an instant in time.’ However, this fact seems to be given
less attention to and even overlooked sometimes. The fact that the space vectors of
any observer are usually represented as vectors in R

3 leads one to forget that these
spaces really are different. This conceptual error leads, e.g., to the ‘velocity addition
paradox’ (Mocanu, 1992). The spaces of two different inertial observers are, of
course, connected via the corresponding Lorentz boost, and the non-transitivity
of Lorentz boosts (which, in fact, gives rise to the notion of Thomas rotation)
gave the correct explanation of this ‘paradox’ (Ungar, 1989; Matolcsi and Goher,
2001).

To grasp the essence of the concepts related to Thomas rotation, let us mention
that in some sense this intriguing phenomenon is analogous to the well-known
twin paradox. Consider two twins in an inertial frame. One of them remains in
that frame for all times, while the other goes for a trip in spacetime, and later
returns to his brother. It is well known that different times have passed for the
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two twins: the traveller is younger than his brother. What may be surprising is
that the space of the traveller when he arrives, although he experienced no torque
during his journey, will be rotated compared to the space of his brother; this is, in
fact, the Thomas rotation. This analogy is illuminating in one more respect: until
the traveller returns to the original frame of reference it makes no sense to ask
‘how much younger is the traveller compared to his brother?’ and ‘by what angle
is the traveller’s gyroscope rotated compared to that of his brother?’ Different
observers may give different answers. When the traveller returns to his brother,
these questions suddenly make perfect sense, and there is an absolute answer
(independent of who the observer is) as to how much younger and how much
rotated the traveller is.

Of course, an arbitrary inertial frame can observe the brothers continuously,
and can tell, at each of the frame’s instants, what difference he sees between the
ages of the brothers. More explicitly, as it is well known, given a world line,
an arbitrary inertial frame can tell the relation between the frame’s time and the
proper time of the world line. This relation depends on the inertial frame: different
inertial frames establish different relations.

Similarly, an arbitrary inertial frame, observing the two brothers, can tell at
each frame-instant what difference he sees between the directions of the gyro-
scopes of the brothers. Different inertial frames establish different relations.

This philosophy makes a clear distinction between Thomas rotation and
Thomas precession connected to a world line:

– Thomas rotation refers to an absolute fact (independent of who observes
it), which makes sense only for two equal local rest frames (if such exist)
of the world line.

– Thomas precession refers to a relative fact (i.e. depending on who observes
the motion), which makes sense with respect to an arbitrary inertial frame.

In this paper, we use the formalism of (Matolcsi, 1993) to give a concise
and rigorous treatment of the discrete and circular-path Thomas rotations. The
Thomas rotation as well as the Thomas precession (with respect to certain inertial
observers) along a circular world line are calculated. Our basic concept here is
that special relativistic spacetime has a four-dimensional affine structure, and
co-ordinatization (relative to some observer) is, in many cases, unnecessary in
the description of physical phenomena. In fact, coordinates can sometimes lead
to ambiguities in concepts and definitions, and bear the danger of leading us to
overlook the fact that absolute space does not exist.

As well as providing a clear overview of the appearing concepts, the
coordinate-free formulation of special relativity enables us to give simple cal-
culations. The indispensable Fermi–Walker equation is also straightforward to
derive in our formalism.
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2. FUNDAMENTAL NOTIONS

In this section, some notions and results of the special relativistic spacetime
model as a mathematical structure (Matolcsi, 1993, 1998; Matolcsi and Goher,
2001) will be recapitulated. As the formalism slightly differs from the usual
textbook treatments of special relativity (but only the formalism: our treatment
is mathematically equivalent to the usual treatments), we will point out several
relations between textbook formulae and those of our formalism.

Special relativistic spacetime is an oriented four-dimensional affine space M

over the vector space M; the spacetime distances form an oriented one-dimensional
vector space I, and an arrow-oriented Lorentz form M × M → I ⊗ I, (x, y) �→
x · y is given.

An absolute velocity u is a future-directed element of M
I for which u · u = −1

holds (absolute velocity corresponds to four-velocity in usual terminology).
For an absolute velocity u, we define the three-dimensional space-like linear

subspace

Eu := {x ∈ M | u · x = 0}; (1)

then

πu := 1 + u ⊗ u : M → Eu, x �→ x + u(u · x) (2)

is the projection onto Eu along u. The restriction of the Lorentz form onto Eu is
positive definite, so Eu is a Euclidean vector space (this will correspond to the
space vectors of an inertial observer with velocity u).

The history of a classical material point is described by a differentiable world
line function r : I → M such that ṙ(s) is an absolute velocity for all proper time
values s. The range of a world line function—a one-dimensional submanifold—is
called a world line.

An observer U is an absolute velocity valued smooth map defined in a
connected open subset of M . (This is just a mathematical definition; it may sound
unfamiliar at first, but considering that something that an observer calls a ‘fixed
space-point’ is, in fact, a world line in spacetime, this definition will make perfect
‘physical’ sense.) A maximal integral curve of U—a world line—is a space point
of the observer, briefly a U-space point; the set of the maximal integral curves of
U is the space of the observer, briefly the U-space.

An observer having constant value is called inertial. An inertial observer will
be referred to by its constant velocity. The space points—the integral curves—
of an inertial observer with absolute velocity u are straight lines parallel to u.
The u-space point containing the world point x is the straight line x + uI, where
uI := {ut | t ∈ I}.

In order to arrive at the analogue of the coordinate system corresponding to
an inertial observer, we need to specify the time synchronization of the observer.
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Of course, the standard synchronization is used: according to the standard syn-
chronization of u, two world points x and y are simultaneous if and only if
u · (y − x) = 0. Thus, simultaneous world points form a hyperplane parallel to
Eu; such a hyperplane is an u-instant, their set is u-time. The u-instant containing
the world point x is the hyperplane x + Eu.

An inertial observer together with its standard synchronization is called a
standard inertial frame. Note that a standard inertial frame is an exactly defined
object in our framework, it does not refer to any coordinates, coordinate axes, it
contains an inertial observer and its standard synchronization only.

The space vector between two u-space points (straight lines in spacetime)
is the world vector between u-simultaneous world points of the straight lines in
question; in formula, u-space, endowed with the subtraction

(x + uI) − (y + uI) := πu(x − y) (3)

becomes a three-dimensional affine space over Eu (this fact shows that Eu does
indeed correspond to the space vectors of the observer u).

This is a crucial point: the space vectors of the standard inertial frame u are
elements of Eu, so the space vectors of different inertial frames form different
three-dimensional vector spaces.

The time passed between to u-instants (hyperplanes in spacetime) is the time
passed between them in an arbitrary u-space point. In formula, u-time, endowed
with the subtraction

(x + Eu) − (y + Eu) := −u · (x − y) (4)

becomes a one-dimensional affine space over I.
If r is a world line function, then the standard inertial frame with velocity

value ṙ(s) is called the local rest frame corresponding to r at s.
In usual treatments, the coordinates distinguish a certain inertial frame (the

‘rest’ frame) and any other inertial frame is considered through its relative velocity
with respect to the rest frame (and the coordinates with respect to the new frame
are given via the corresponding Lorentz transformation). The main feature of our
approach is the systematic use of absolute velocities for characterizing standard
inertial frames (this perfectly reflects the principle of relativity: no inertial frame
can be distinguished compared to other inertial frames). Among several advan-
tages, such as clarity of many concepts appearing in the theory of relativity, it
often results in highly simplified and clear formulae.

3. RELATIVE VELOCITY AND RELATIVE ACCELERATION

Let r be a world line function (describing the history of a classical material
point). A standard inertial frame with absolute velocity u gives a correspondence
between u-time t and the proper time s of the world line function r: if t0 is the
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u-instant of the world point r(0), then, according to (4), t := (r(s) + Eu) − (r(0) +
Eu) = −u · (r(s) − r(0)); therefore,

dt
ds

= −u · ṙ(s). (5)

As a consequence, the proper time too can be given as a function of u-time, and

ds
dt

= 1

−u · ṙ(s(t))
. (6)

The inertial frame observes the history of the material point as a motion,
assigning u-space points to u-instants: ru(t) := r(s(t)) + uI. Then, according to
(3) and the previous equality, the relative velocity is (for the sake of brevity we
omit the variable t from the expressions)

vu := r ′
u = lim

h→0

ru(t + h) − ru(t)
h

= ṙ(s)

−u · ṙ(s)
− u (7)

and the relative acceleration is

au := r ′′
u = 1

(−u · ṙ(s))2

(
r̈(s) + ṙ(s)(u · r̈(s)

−u · ṙ(s)

)
(8)

where the derivative according to u-time is denoted by a prime.
It is worth mentioning that

−u · ṙ(s) = 1√
1 − |vu|2

=: γu, (9)

the well-known relativistic factor.

4. LORENTZ BOOSTS AND DISCRETE THOMAS ROTATIONS

As we emphasized, the space vectors of different standard inertial frames
form different three-dimensional vector spaces; for the absolute velocities u and
u′, Eu and E′

u are different vector spaces. A natural correspondence can be given
between them, the Lorentz boost from u to u′ (Matolcsi, 1993; Matolcsi and Goher,
2001),

B(u′, u) := 1 + (u′ + u) ⊗ (u′ + u)

1 − u′ · u
− 2u′ ⊗ u (10)

which is a Lorentz form preserving linear map on M, such that B(u′, u)u = u′.
This is the absolute form (which appears implicitly in Rowe, 1984, too) of the
usual Lorentz boost. It is clear from the given formula that this absolute form
depends on two absolute velocities. The explicit matrix form of a textbook Lorentz
boost depends on a single relative velocity but, in fact, it also refers to two
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inertial observers (one of which is the ‘rest frame,’ not appearing explicitly in the
formulae).

The vector q′ in the space of the inertial frame u′ is called physically equal
to the vector q in the space of the inertial frame u if q′ = B(u′, u)q; we say also
that q boosted from Eu to E′

u equals q′. This Lorentz boost gives sense to the
usual tacit assumption that the corresponding coordinate axes of different inertial
frames are parallel. The coordinate axes defined by the vectors ei in Eu are parallel
to the axes defined by the vectors e′

i in E′
u if e′

i = B(u′, u)ei (i = 1, 2, 3). (The
parallelism of frame axes is usually a nagging problem in standard treatments; see
the discussion in the Introduction of Kennedy, 2002.)

To be physically equal is a symmetric relation: B(u′, u)−1 = B(u, u′), so if
q′ is physically equal to q, then q is physically equal to q′.

On the other hand, to be physically equal is not transitive: the product of two
Lorentz boosts, in general, is not a Lorentz boost (as it is well known): we have

B(u′′, u′)B(u′, u) = B(u′′, u) iff u, u′, u′′ are coplanar, (11)

(which is equivalent to the standard formalism: the relative velocity of u′′ with
respect to u and the relative velocity of u′ with respect to u are collinear).

In an equivalent formulation,

Ru(u′, u′′) := B(u, u′′)B(u′′, u′)B(u′, u) (12)

is the identity transformation if and only if u, u′, u′′ are coplanar. Note that
Ru(u′, u′′)u = u and the restriction of Ru(u′, u′′) onto Eu is a rotation, called
the discrete Thomas rotation corresponding to u, u′ and u′′. The general formula
for this rotation (in this absolute formalism) was given by Matolcsi and Goher
(2001).

Thus, if q′ is physically equal to q and q′′ is physically equal to q′, then q
need not be physically equal to q′′. This is why the Thomas rotation appears to be
‘paradoxic.’

In other words, a vector q boosted from Eu to E′
u yields q′ and then q′ boosted

from E′
u to Eu′′ yields q′′, and lastly q′′ boosted from Eu′′ back to Eu, results in a

vector rotated from the original q.

5. COMPASSES

A boost, as defined earlier, does not mean a real transport of vectors from an
observer space into another one. Nevertheless, it can be related to such a transport
in the following situation.

A compass (a needle fixed to a central point) can be described in spacetime
as a vector attached to a material point; more precisely, as a pair of functions
(r, z) where r is a world line function (the history of the material point) and z is
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a vector-valued function (describing the direction of the needle) defined on the
proper time of r , z : I → M, such that

– it is always space-like according to the corresponding local rest frame of
the world line, i.e. ṙ · z = 0,

– the magnitude of z, |z| is constant.

Thus, the needle of the compass passes continuously from the space of one
local rest frame to that of another one. The compass is conceived to be locally
inertial if z is physically constant along r (keeps direction in itself), i.e. the values
of z are boosted continuously corresponding to the absolute velocities of the
world line. This means that if h is a “small” time period, then z(s + h) in Eṙ(s+h)

is “nearly” physically equal to z(s) in Eṙ(s), more precisely

lim
h→0

z(s + h) − B(ṙ(s + h), ṙ(s))z(s)

h
= 0. (13)

Because ṙ · z = 0, we can replace (ṙ(s + h) + ṙ(s)) · z(s) with (ṙ(s + h) −
ṙ(s)) · z(s), so

B(ṙ(s + h), ṙ(s))z(s) = z(s) + (ṙ(s + h) + ṙ(s))(ṙ(s + h) − ṙ(s)) · z(s)

1 − ṙ(s + h) · ṙ(s)
(14)

and the earlier limit becomes ż − ṙ(r̈ · z) = 0, from which, taking into account
again ṙ · z = 0, we get the well-known Fermi–Walker equation along r

ż = ṙ(r̈ · z) − r̈(ṙ · z) = (ṙ ∧ r̈)z. (15)

Note that the Lorentz boosts in terms of absolute velocities yielded this
equation in an extremely brief and simple way (in contrast to the usual deductions,
see e.g. Møller, 1972).

If z is any vector satisfying the Fermi–Walker equation along r , then (ṙ · z)̇ =
0, so ṙ · z is constant; if z(s0) is space-like according to ṙ(s0) for one proper time
value s0, then z(s) is space-like according to ṙ(s) for all s (z is always space-like
according to the corresponding local rest frame of r). Moreover, then ż · z = 0, so
the magnitude of z is constant.

Let us introduce another term. Let r be world line function. We call a function
z : I → M a gyroscopic vector on r if z satisfies the Fermi–Walker equation along
r and a value of z is space-like according to the corresponding local rest frame
of r . Obviously, if z is a gyroscopic vector along r , then (r, z) is a locally inertial
compass. It is well known and easily verifiable that if z1 and z2 are gyroscopic
vectors on the same world line, then z1 · z2 is constant (which corresponds to the
fact that ‘non-rotating’ vectors retain their relative angle).
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6. CIRCULAR WORLD LINE

Take a standard inertial frame with velocity value uc. A circular motion with
respect to this frame can be given by

– its centre qc in uc-space,
– its angular velocity, an antisymmetric linear map 0 �= � : Euc

→ Euc

I (usu-
ally one considers angular velocity as a spatial axial vector which, in fact,
corresponds to an antisymmetric tensor),

– its initial position with respect to the centre, a vector 0 �= q in Euc
, orthog-

onal to the kernel of � such that |�q| < 1.

This motion has the form

t �→ qc + et�q = qc + q cos ωt + �q
ω

sin ωt (16)

where ω := |�| =
√

1
2 Tr�∗�. Note that we have

�2q = −ω2q, |�q| = ωρ (17)

where ρ := |q|.
The relative velocity of this motion equals et��q, which has the magnitude

ωρ. Thus, we infer from (5) and (9) that the relation between the proper time s of
the world line and the uc-time t is t = sλ, where

λ := 1√
1 − ω2ρ2

. (18)

Then it is easy to see that this motion comes from the world line function

s �→ r(s) = o + sλuc + esλ�q (19)

where o is a world point of the centre qc (which is a straight line in spacetime).
Then

ṙ(s) = λ(uc + esλ��q), r̈(s) = −λ2ω2esλ�q. (20)

Note that uc is the absolute velocity of the centre and u0 := λ(uc + �q) is
the “initial” absolute velocity of the world line.

7. GYROSCOPIC VECTORS ON A CIRCULAR WORLD LINE

Introducing the variable t := λs (uc-time) and the function ẑ(t) := z(t/λ),
then omitting the “hat” for brevity, we get the Fermi–Walker differential equation
(15) along the earlier circular world line in the form

z′(t) = −λ2ω2((uc + et��q) ∧ (et�q))z(t). (21)
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In the sequel, we find it convenient to consider � as defined on the whole of
M in such a way that �uc = 0. Then, � will be a Lorentz antisymmetric linear
map on the whole of M, thus et� will preserve the Lorentz form (it will be a
Lorentz transformation) for which et�uc = uc holds.

Then, we infer that a(t) := e−t�z(t) satisfies

a′(t) = −�a(t) + e−t�(−λ2ω2((uc + et��q) ∧ (et�q)))et�a(t). (22)

Using the fact that e−t�uc = uc and the tensorial identity that the trans-
posed of the term et� on the right of the tensor product can be carried into
the second factor of the product, we arrive at the autonomous linear differential
equation

a′(t) = −�a(t) (23)

where

� := � + λ2ω2(uc + �q) ∧ q = λ2� + λ2ω2uc ∧ q (24)

where the latter equality relies on the simple fact that

(�q) ∧ q = ρ2�. (25)

As a consequence—since a(0) = z(0)—, we get the solution of the Fermi–
Walker differential equation in the form

z(t) = et�e−t�z(0). (26)

Let us investigate the properties of

F(t) := et�e−t� (27)

which we call the Fermi–Walker operator at t = λs, s being a proper time point
of the circular world line function.

Since � is an antisymmetric linear map, e−t� is a Lorentz transformation.
It is trivial that �u0 = 0, thus the restriction of e−t� onto the three-dimensional
Euclidean space Eu0 is a rotation.

We know that the restriction of the Lorentz transformation et� onto the
Euclidean vector space Euc

is a rotation, and its restriction onto Eu0 is an orthogonal
transformation onto Eṙ(t/λ).

Thus, et�e−t� , as a product of two Lorentz transformations, is a Lorentz
transformation too. Its restriction onto Eu0 is a Euclidean structure preserving
linear bijection from Eu0 onto Eṙ(t/λ). This can be conceived as a spatial rotation
only if ṙ(t/λ) = u0 (otherwise, it acts between different Euclidean spaces).
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8. THOMAS ROTATION ON THE CIRCULAR WORLD LINE

The absolute velocity of the circular world line is periodic, ṙ( 2π
ωλ

) = ṙ(0) =
u0. Since e

2π
ω

� is the identity map, we have for the corresponding Fermi–Walker
operator

F
(

2π

ω

)
= e− 2π

ω
� (28)

whose restriction onto the Euclidean vector space Eu0 is a rotation, called the
Thomas rotation on the circular world line (19).

The angle of the Thomas rotation is 2π − 2π
ω

|�|, where |�| is the
magnitude of �; Tr�∗� = λ4Tr(−�2 − ω4q ⊗ q + ω4ρ2uc ⊗ uc) = λ4(2ω2 −
2ω4ρ2) = 2λ2ω2, therefore |�| = λω.

As a consequence, the Thomas angle on the circular world line equals

2π

(
1 − 1√

1 − ω2ρ2

)
(29)

which is the well-known result (Thomas, 1927).
It is worth noting that the value of a gyroscopic vector after a whole revolution

equals the original one if and only if the gyroscopic vector is parallel to the kernel
of �, i.e. it is orthogonal to the plane of rotation in the space of the centre.

9. GENERALIZATIONS

Besides deriving the Thomas angle on the circular world line in a short and
transparent way, our method gives the Thomas rotation operator itself, and allows
us the following insight into the behaviour of gyroscopic vectors in general.

Let r be an arbitrary world line function. The solutions of the corresponding
Fermi–Walker equation with various initial values give us a Fermi–Walker operator
F(s2, s1), a Lorentz transformation for all proper time points s1 and s2 such that

ṙ(s2) = F(s2, s1)ṙ(s1) (30)

and

z(s2) = F(s2, s1)z(s1) (31)

for an arbitrary gyroscopic vector z on r .
Thus, the restriction of F(s2, s1) onto Eṙ(s1)—the space vectors of the local rest

frame at s1—is a Euclidean structure preserving linear bijection onto Eṙ(s2)—the
space vectors of the local rest frame at s2.

In particular, if ṙ(s2) = ṙ(s1), the restriction of F(s2, s1) onto Eṙ(s1) is a rota-
tion, which we call the Thomas rotation on the world line r , corresponding to the
proper time points s1 and s2.
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It is worth noting that a Thomas rotation on a world line for two proper
time values has a meaning only if the corresponding absolute velocities are equal.
Thus, no Thomas rotation can be defined on a world line if all its absolute velocity
values are different.

10. THOMAS PRECESSION WITH RESPECT
TO AN INERTIAL FRAME

Now, let z be a gyroscopic vector on the world line function r . An inertial
frame u observes z by boosting it continuously to its own space, i.e. giving the
function zu : I → Eu such that

zu(t) := B(u, ṙ(s(t)))z(s(t)). (32)

Then, omitting t as previously, we infer that

z′
u = 1

−u · ṙ(s)

(( d

ds
B(u, ṙ(s))

)
z(s) + B(u, ṙ(s))ż(s)

)

= 1

−u · ṙ(s)

(( d

ds
B(u, ṙ(s))

)
B(ṙ(s), u)zu (33)

+ B(u, ṙ(s))(ṙ(s) ∧ r̈(s))B(ṙ(s), u)zu)
)

Consider the second term: using the fact that B(u, ṙ(s))ṙ(s) = u and the
tensorial identity that the transposed of the term B(ṙ(s), u) can be carried into the
second factor of the product, we get (omitting s for the sake of brevity)

B(u, ṙ)(ṙ ∧ r̈)B(ṙ , u)zu = u ∧ B(u, ṙ)r̈ = u ∧
(

r̈ + ṙ(u · r̈)

1 − u · ṙ

)
(34)

where in the second equality we applied the expression (10). As concerns the first
term, a straightforward calculation (using formula (10)) yields that it equals

ṙ ∧ r̈

1 − u · ṙ
− u ∧ r̈ − 2u ∧

(
ṙ(u · r̈)

1 − u · ṙ

)
(35)

Taking into account (7) and (8), we finally obtain

z′
u = γ 2

u

1 + γu
(vu ∧ au)zu (36)

which is the known result.
Thus, the inertial frame u sees the gyroscopic vector z—which keeps direction

in itself—precessing, the angular velocity of precession is the antisymmetric linear
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map (depending on u-time)

�u := γ 2
u

1 + γu
vu ∧ au = γu − 1

|vu|2 vu ∧ au : Eu → Eu

I
. (37)

We call the reader’s attention to the fact that the same gyroscopic vector
precesses differently with respect to different inertial frames.

11. THOMAS PRECESSIONS CORRESPONDING
TO A CIRCULAR WORLD LINE

Let us consider the circular world line described in Section 6.
Let us take the standard inertial frame of the centre, i.e. the one with absolute

velocity uc. Then equalities in (20), (7) and (8) yield

vuc
(t) = et��q, auc

(t) = −ω2et�q. (38)

Then vuc
(t) ∧ auc

(t) = −ω2et�((�q) ∧ q)e−t� = −ω2ρ2� because of (25). Since
ω2ρ2 = |vuc

|2, the angular velocity of the Thomas precession with respect to the
“central frame” uc is constant in uc-time, equalling(

1 − 1√
1 − ω2ρ2

)
�. (39)

Usual treatments (Møller, 1972) consider exclusively this precession in con-
nection with the circular world line, i.e. the Thomas precession with respect to the
central frame. Of course, there are other possibilities too.

For instance, let us take the standard inertial frame in which the gyroscopic
vector is at rest initially, i.e. the one with absolute velocity u0 = λ(uc + �q).

Then

γu0 (s) = −u0 · ṙ(s) = λ2(1 − ω2ρ2 cos ωλs). (40)

Consequently, solving (5) we get that the u0-time t and the proper time s have the
relation t = λ2s − λω2ρ2 sin ωλs. Then in view of (7), we find

vu0 = λ
(uc + eλs��q)(1 − ω2ρ2)

1 − ω2ρ2 cos ωλs
− λ(uc + �q) (41)

and a similar, more complicated formula gives au0 too; as a consequence, the
angular velocity of the Thomas precession with respect to the inertial frame u0

depends rather intricately on u0-time. For instance, if n is an arbitrary natural
number, then

– for u0-instants given by λs = 2nπ
ω

, the value of the relative velocity is zero,
so the angular velocity of Thomas precession has zero value too;
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– for u0-instants given by λs = (2n−1)π
ω

, the relative velocity equals

− 2λ
1+ω2ρ2 (ω2ρ2uc + �q) and the relative acceleration is (1−ω2ρ2)ω2

(1+ω2ρ2)2 q, so
the angular velocity of Thomas precession has value

− λ

(1 + ω2ρ2)ρ2
(ω2ρ2uc + �q) ∧ q = − 1

λ(1 + ω2ρ2)
� (42)

with � as in (24). The magnitude of this instantaneous angular velocity is
ω

1+ω2ρ2 .

12. DISCUSSION

The systematic use of absolute velocities instead of relative ones gives us
a nice form of the Lorentz boosts which results in extremely brief and simple
derivation of

– the discrete Thomas rotation due to successive Lorentz boosts (see Matolcsi
and Goher, 2001 for the explicit formula),

– the Fermi–Walker equation,
– the Thomas rotation on a circular world line,
– the concept of Thomas rotations in general,
– the Thomas precession with respect to an inertial frame,
– a clear conceptual distinction between Thomas rotation and Thomas pre-

cession.

It is an important fact that the Thomas rotation is absolute, i.e. independent
of reference frames, while the Thomas precession is relative, i.e. refers to inertial
frames. It is emphasized again that the same gyroscope shows different precessions
when observed by different inertial frames.

In a forthcoming paper, we use a similar treatment in the same absolute
formalism to show that the change of polarization of light when reflected is an
analogous phenomenon to the discrete Thomas rotation.
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